

Maths Workshop

November 2019
KS1 Year 2

What we will cover

Explanation of:

- Different methods and strategies used
- Concrete-Pictorial-Abstract approach
- Bar modelling
- Calculation \& problem solving examples

Levels of learning

Shallow learning: surface, temporary, often lost Deep learning: it sticks, can be recalled and used
Deepest learning: can be transferred and applied in different context

What is mastery?

- The essential idea behind the mastery teaching approach is that all pupils gain a deep understanding of the mathematics. This ensures that:
- Future mathematical learning is built on solid foundations which do not need to be re-taught (less breadth but greater depth)
- Increasingly, there will be less need for separate catch-up programmes due to some children falling behind;
- Pupils who, under other teaching approaches, can often fall a long way behind, are better able to keep up with their peers, so that gaps in attainment are narrowed whilst the attainment of all is raised.

Concrete

Pictorial
Abstract
$3+1=4$

Concrete or pictorial representations support students to understand abstract concepts

Place Value...

Place value is the value of each digit in a number. It means understanding that 82 is made 80 and 2, rather than 8 and 2.

Tens	Ones
1	2
0	
0	
0	00
0	
0	

Place Value...

Place Value...

Match the representation to the correct number.

24

4 tens and
2 ones

Place Value...

Place Value...

It is important that children can partition numbers in a variety of ways, not just as tens and ones. For example, 58 is made up of 5 tens and 8 ones or 4 tens and 18 ones, or 20 and 38 , etc.

Place Value...

How many two-digit numbers can you make using the digit cards only once?

I can make \qquad two-digit numbers.

They are

Addition +	Subtraction -	Multiplication More than	Subtract
Total	Minus	Lultiply	Division
Altogether of	Less than	Times	Share
Plus	Take away Add	Multiplied by Difference between	Multiples of

Objective \＆ Strategy	Concrete	Pictorial	Abstract	
Add a two digit number and ones	$17+5=22$ Use ten frame to make＇magic ten Children explore the pattern． $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		$\begin{aligned} & 17+5=22 \\ & \text { Explore related facts } \\ & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$	
Add a 2 digit num－ ber and tens	Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$	
Add two 2－digit numbers	㭋部 AHA喑吅吅 Model using dienes，place value counters and numicon	Use number line and bridge ten using part whole if necessary．	$\begin{gathered} 25+47 \\ 20+5 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$	
Add three 1－digit numbers	Combine to make 10 first if possible，or bridge 10 then add third digit	$8_{8}^{8}+8_{8}^{8}+\operatorname{bin}_{8}^{8} 8$ Regroup and draw representation． $\log _{8}^{8}+8^{8}+8^{8}=15$	$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make／ bridge ten then add on the third．	

Using a number line...

$23+12=$

Addition
 Using partitioning...

Partitioning both numbers into tens and ones mirrors the column method where ones are placed under ones and tens under tens. This also links to mental methods.
The expanded method leads children to the more compact method so that they understand its structure and efficiency. The amount of time that should be spent teaching and practising the expanded method will depend on how secure the children are in their recall of number facts and in their understanding of place value.
$7+4$
$70+40=110$
$110+13=123$

Addition

Using columns.

In this method, recording is reduced further. Carry digits are recorded below the line, using the words 'carry ten' or 'carry one hundred', not 'carry one'.

$$
\begin{array}{r}
326 \\
+\quad 254 \\
\hline
\end{array}
$$

The bar model is a really good way of helping children to understand the relative sizes of numbers and to link three numbers together in different ways, showing addition and subtraction are closely related (inverse).

There are 20 sweets in my bag and 13 sweets in my friend's bag. How many sweets have we got altogether?			
20			13

Number families...

Objective \& Strategy	Concrete	Pictorial	Abstract	
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$\begin{aligned} & 3338 \\ & 20-4= \end{aligned}$	$20-4=16$	
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$	
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$	

Subtraction

Steps in subtraction can be recorded on a number line. The steps often bridge through a multiple of 10 .

$$
15-7=8
$$

74-27 = 47 worked by counting back:

Subtraction

Using a number line...
$28-13=$

Subtraction

Finding an answer by counting up - The steps can also be recorded by counting up from the smaller
to the larger number to find the difference, for example by counting up from 27 to 74
in steps totaling 47. Pupils should be comfortable that either way we get the same answer
(and that the three numbers involved therefore hold an inverse relationship).

$$
74-27=
$$

Subtraction

Exponded loyout, leoding to colunn method

- Partitioning the numbers into ters and ones and witing one under the other mirrors the colunn nethod, where ones are ploced under ontes and tens under tefts.
- The exponded method leads children to the nore compact method soo that they under'stand its structure and efficiency.

Start by subtrocting the ones, then the tens. Refep to subtracting the tens, for example, by saying "sixty take oway forty', not 'six take owoy four'.

Subtraction

The concept of transfer / exchange

 Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together.
Counting in multiples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=\square$

Multiplication

We started with step counting in Year 1 and still do this but we also look for patterns and start to know that $1 \times 2=2$ and $2 \times$ $2=4$ etc.
Which times table has been highlighted on the number square?

How do you know?
Which of these numbers would you find in the 5 times table?

134
 67
 205
 502

How do you know?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Multiplication

Arrays

Multiplication $3 \times 3=$ $3+3+3=$

Division

By sharing

The farmer had 12 sheep. He put them into three fields. How many sheep were in each field.

$$
12 \div 3=
$$

Division
$12 \div 3=$

Using a number line and repeated subtraction

Mental starters - brain warmers!

Prove it!! (Explain and justify) Which is the odd one out?

$$
458
$$

Mental starters - brain warmers!
Missing number problems...

$$
14+\ldots=23
$$

$$
25-\ldots=20
$$

Mental starters - brain warmers!

$$
20+14=30+4
$$

(is the same as)
$30+11=20+$

Bar model - pictorial representation of a problem

Using this model children can understand these relationships:

$$
\begin{array}{ll}
b+c=a & a-b=c \\
c+b=a & a-c=b
\end{array}
$$

Addition

I have 6 red pencils and 4 yellow pencils. How many pencils do I have?
(I combine two quantities to form the whole)

Subtraction

- Take Away

I had 10 pencils and I gave 6 away, how many do I have now?

(This time we know the whole but only one of the parts, so the whole is partitioned and one of the parts removed to identify the missing part)

Make 6
I. Roll dice
2. Colour dice 10006^{6}
100,024
3. Colour other part number
4. The parts are...

Easiest? Hardest?

32-29
32-21

32-19

Different ways
26-18= \square

Take away 20 then add \qquad
to

Different ways

Digit cards game

You need these digit cards: Use each digit once.

Digit cards game You need digit cards 0 to 9 Use seven of the cards. Complete the number sentences.

Challenge: use the $\mathbf{0}$ card.

Fill the gaps
$13-8=5$ spot the pattern
$1 \square-7=5$
$1 \square-6=5$
$1 \square-5=5$

True or false? \sqrt{x}

$5+3^{\sqrt{\imath}}=8$

$$
\underset{8}{\substack{\mathbf{8 - 5}=\mathbf{3} \\ \square}} 5-8=3
$$

$$
8-3=5
$$

$$
8=5+3
$$

$$
3+5=8
$$

Fill the gaps

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 1 & 4 \\
\hline
\end{array}-8=6 \\
& \begin{array}{l|l}
1 & 4 \\
1 & -\square=7 \\
1 & 4 \\
\hline
\end{array} \\
& \begin{array}{l}
1 \\
1
\end{array} 4-\square=8 \\
& \hline
\end{aligned}
$$

